sábado, 28 de febrero de 2015

Propiedades de sales

PROPIEDADES DE LAS SALES
  1. Rotulen los vasos de precipitado con el nombre de las sales a estudiar, agreguen 10ml de agua destilada y 0.5g de la sal correspondiente. Tomen nota de si es soluble o no, es decir si se deshace o no.

  2. Ahora por medio de un conducimetro, determina si las disoluciones conducen la corriente eléctrica. 
  3. Por medio de un conducimetro determina si las sales en estado solido conducen electricidad.
    NO CONDUCE ELECTRICIDAD: CaSO4


    NO CONDUCE ELECTRICIDAD: KNO3


                                               No conduce electricidad 
  4. TEMPERATURA DE FUSION. Sobre una espátula cucharilla para calentar coloca cristales de cada una de las sales, pon la cucharilla sobre el mechero y espera unos dos minutos.





lunes, 23 de febrero de 2015

Actividad 2 Libro de quimica

1.-Primero pesamos la tierra,

2,. Vimos como se veia antes y despues de añadirle un agua destilada
 4.- Calentamos la tierra hasta que el agua se avaporara
 5.- Lo volvimos a pesar y vimos que sus propiedades cambiaron


viernes, 20 de febrero de 2015

Experimento

  1. ACTIVIDAD DE LABORATORIO 3-SALES SOLUBLES DEL SUELO
  2. PRACTICA
  1. OBJETIVO: Determinar experimeltalmente la presencia de algunos cationes y aniones en la disolución del suelo.
  1. ANIONES
  2. Cl-1
  3. S-1
  4. SO4-2
  5. NO5-1
  6. PO4-3
  1. PROCEDIMIENTO
  2. Toma un vaso de precipitado y coloca 50 ml de agua destilada en un vaso, determina su pH con una tira de papel pH y anotalo. Agrega al vaso una chucharada de suelo tamizado y agita durante 3 minutos.Despues agrega acido nítrico hasta que el pH sea 1-2. Filtra la mezcla utilizando el papel filtro y el embudo en otro vaso.Ahora tendrás una disolución A y un residuo solido B.

  1. ANALISIS DE DISOLUCION A
  2. A) Aqui lo que se hizo fue una identificaron de cloruros en la muestra de suelo; necesitas agregar en un tubo de ensayo 2ml de la disolución A, después añade cloro y de cuatro a cinco gotas de nitrato de plata y agita. Observaras que la disolución toma un color blanco y se notara mas densa, esto nos indico que en nuestra muestra de suelo hay cloruros.
  3. B) Esta vez se queria identificar la existencia de sulfatos haciendo el mismo procedimiento pero esta vez agregando sulfato mas  unas 10 gotas de cloruro de bario, se observo que la sustancia se torno banca y densa como la muestra anterior.
  4. C) Se continua con la identificación del ion hierro para esto se agrega en otro tubo de ensayo 2ml de la disolución A junto con hierro III y de tres a cuatro gotas de sulfocianuro de potasio, la reacción observada fue que la sustancia tomo un color rojizo por lo cual se dice que hay hierro en nuestra muestra de suelo.
  5.  ANALISIS DE RESIDUO SOLIDO B
  6. A) Aqui se busca la identificacion de carbonatos. Para esta reacción se toma la muestra que quedo en el papel filtro y se pasa a un vaso de precipitado y se agregan de 2 a 3 gotas de acido nítrico, en ese momento la muestra hace una efervescencia y se torna de color blanco, lo cual nos indica que hay carbonatos n la muestra.
  7. CONCLUSION
  8. En esta practica se pudo comprobar que en el suelo hay aniones y cationes y que en el caso de los nipones las sustancias se trinan de un color blanco y en el caso de los cationes toman un color rojizo.

viernes, 13 de febrero de 2015

Experimento

Clasificacion del suelo
  • PROCEDIMIENTO:
1.-Colocar en un vaso de precipitado de 600 ml una muestra de 2 gramos de suelo tamizado y agrega 20 ml de agua oxigenada.
2.-Colocar el vaso de precipitado sobre la tela de asbesto y calienta levemente con el mechero Busen.
3.-Agrega mas agua oxigenada, si es necesario,hasta que cese la efervescencia debida a la presencia de material orgánico.
4.-En seguida agrega 10 ml de ácido clorhidrico y deja herivir durante 5 minutos con la finalidad de eliminar sustancias indeseables. 
5.-Agrega agua hasta la marca de 500 ml y agita vigorosamente, lo que permita lavar los sólidos que quedan.
6.-Deja reposar la suspensión y luego tira el agua. 
7.-Repite el lavado hasta que nada quede de suspencion.
8.-Después de una decantacion final, toma una muestra de los sólidos con la punta de la espátula, colocala sobre un vidrio de reloj y escala sobre la tela de asbesto.
9.-Dposita los fragmentos sobre una hoja de papel de modo que queden separados los fragmentos unos de otros.
10.-Examina los fragmetos con una lupa o al microscopio.

Conclusion:

El suelo como dije en la practica pasada esta formado por 2 componentes la materia organica y la mayoria inorganica; estos juntos forman a los minerales que son encontrados en distintas proporciones, dependiendo del tipo de suelo y region del origen.

viernes, 6 de febrero de 2015

A) Sintesis de cada capitulo (libro Quimica; Universo, Tierra, vida---Dr. Romo)

I.             ÁTOMOS Y MOLÉCULAS EN EL UNIVERSO. LA TABLA PERIÓDICA DE LOS ELEMENTOS
Este capítulo nos habla del inicio y la creación del universo, sobre nuestra Vía láctea y en esta de nuestro sol y como en el Universo después de muchos millones de años  se comenzaron a formar los núcleos de los primeros elementos. Nos dice que primero se formaron los más simples, el hidrógeno y el helio (estos son los más ligeros); posteriormente, en el interior de las estrellas se fueron formando los núcleos de otros elementos, hasta llegar a un número cercano a 100. Los químicos los han ido descubriendo poco a poco y han encontrado que se pueden clasificar de acuerdo con sus propiedades físicas y químicas en lo que se ha nombrado la “tabla periódica de los elementos”.
Nos menciona que el hidrógeno, es el elemento más sencillo y más abundante en el Universo, es un gas más ligero que el aire, está formado por un núcleo, llamado protón, que posee una carga positiva, la cual se encuentra neutralizada por un electrón. El hidrógeno se combina con otros elementos formando moléculas. Cuando se mezcla con oxígeno en un soplete y se le prende fuego, arde produciendo flama de color azul pálido, liberando tal cantidad de calor que funde al hierro con facilidad, por lo que el soplete oxhídrico se usa para cortar láminas de acero. En esta reacción el oxígeno y el hidrógeno se combinan produciendo agua, que se escapa en forma de vapor.
PROPIEDADES DEL AGUA

2H2 + O2 2H2O + calor (fuego)
hidrógeno + oxígeno + agua + fuego

El agua es el producto formado en la combustión del hidrógeno, es la molécula más abundante en la Tierra, donde se le encuentra en sus tres estados físicos: como líquido(cubre las 3/4 partes de la superficie del planeta como lo son los mares, ríos y lagos). El gaseoso, en grandes cantidades en la atmósfera, de donde se precipita como lluvia o nieve, y en su estado sólido (hielo), formando depósitos sobre las altas montañas y cubriendo las regiones polares.
Esta molécula tan singular y abundante es la base de la vida. El agua, en estado puro, es un líquido incoloro, inodoro e insípido. Las propiedades físicas de tan importante sustancia a menudo se toman como tipo: su punto de fusión es de 0° su punto de ebullición a nivel del mar es de 100° la mayor densidad del agua se alcanza a 4°, siendo de 1 g/ml, es decir que cada mililitro pesará un gramo y por lo tanto un litro pesará un kilogramo.


II.            EL ÁTOMO DE CARBONO, LOS HIDROCARBUROS, OTRAS MOLÉCULAS ORGÁNICAS, SU POSIBLE EXISTENCIA EN LA TIERRA PRIMITIVA Y EN OTROS CUERPOS CELESTES

Aquí en este capítulo nos habla de la generación del carbono y de los átomos más pesados, nos dice que se dio en el interior de las estrellas antes de la formación de nuestro Sistema Solar, cuyo nacimiento, a partir de materiales cósmicos, polvo y gas provenientes de los restos de estrellas que explotaron, se remonta a un pasado inimaginable: algo así como 4 600 millones de años.
Los elementos del 93 al 109, llamados transuránicos, han sido preparados artificialmente por el hombre, mediante colisiones entre distintos átomos.
Cualquier elemento natural o sintético es identificado por su número atómico Z, que corresponde al número de protones que lleva en su núcleo. Cada elemento puede tener un número variable de isótopos. El hidrógeno, que posee un protón y un electrón, tiene además un isótopo estable, cuyo núcleo está formado por un protón y un neutrón. A este isótopo con peso atómico de dos se le llama deuterio.
Los diferentes isótopos de un elemento se llamarán, en general, de la misma manera y ocuparán el mismo lugar en la tabla periódica de los elementos, además de que tendrán idénticas propiedades químicas dado que su configuración electrónica permanece estable. El carbono, elemento base de la vida, se encuentra en la corteza terrestre en una proporción de 0.03%, ya sea libre o formando parte de diversas moléculas. Como era de suponerse, el carbono se encuentra también en los demás planetas de nuestro Sistema Solar, ya que todos fueron formados a partir de la misma nebulosa. Se ha comprobado su existencia en meteoritos y en las muestras de piedras traídas de la Luna.

PRIMEROS HIDROCARBUROS
La Tierra, al igual que los demás planetas, tuvo en su primera época una atmósfera rica en hidrógeno (H2), por lo que el carbono (C) reaccionó con él formando moléculas de hidrocarburos (carbono hidrogenado). Como el hidrógeno contiene un solo electrón de valencia, cada átomo de carbono se une a cuatro de hidrógeno formando el más sencillo de los hidrocarburos, el metano (CH4). El metano es una molécula estable en la que las capas electrónicas de valencia, tanto del hidrógeno como del carbono, están saturadas, el primero formando un par como en el helio y el segundo un octeto como en el neón.

LOS COMETAS
En los helados confines del Sistema Solar existen congelados millones de pequeños cuerpos celestes formados de hielo, gas y polvo. Cuando alguno de ellos es perturbado por el paso de una estrella, se pone en movimiento y, al recibir el calor del Sol, cobra vida, libera gases y polvo e inicia un viaje describiendo una órbita elíptica alrededor del Sol.
Las órbitas de algunos de ellos son alteradas por influencia de los grandes planetas, convirtiéndose en cometas de periodo corto, como es el caso del cometa Halley, que pasa por las cercanías de la Tierra cada 76 años.
COMPUESTOS OXIGENADOS DEL CARBONO

Conforme la atmósfera de la Tierra fue adquiriendo oxígeno, éste se fue consumiendo en la oxidación de los distintos elementos y moléculas que existían en ella. Al no haber suficiente oxígeno atmosférico, no había posibilidad de combustión; tanto el hidrógeno como los hidrocarburos podían calentarse a elevadas temperaturas sin producción de fuego.
Y bueno se van desenvolviendo demasiados temas sobre cometas, insecticidas ,alcohol etílico, etc.




































III.           RADIACIÓN SOLAR, APLICACIONES DE LA RADIACIÓN, CAPA PROTECTORA DE OZONO, FOTOSÍNTESIS, ATMÓSFERA OXIDANTE, CONDICIONES APROPIADAS PARA LA VIDA ANIMAL

Las distintas radiaciones solares, de las cuales la luz visible es sólo una pequeña parte, viajan por el espacio en todas las direcciones, como los radios de un círculo, de donde proviene su nombre. Debido a que las radiaciones viajan como ondas a la velocidad de la luz (c), tendrán como característica la longitud de onda (), que es la distancia entre dos máximos.


Tambien nos habla sobre: CELDAS FOTOVOLTAICAS
Las celdas fotovoltaicas se han usado en el espacio desde 1958 para suministrar energía eléctrica a los satélites artificiales. Y esto debido a que son muy eficientes en la conversión de energía solar a energía eléctrica (± 20%), aunque, debe aclararse, tienen el inconveniente de ser muy caras

Tambien sobre
FOTOSÍNTESIS
En la fotosíntesis ocurre un proceso similar al descrito para las celdas fotovoltaicas. Aunque en aquélla no se produce una corriente eléctrica, es sin embargo más eficiente que el realizado en una celda fotovoltaica artificial.
La clave para tan alta eficiencia reside en la arquitectura molecular y en su asociación a membranas. Las membranas biológicas consisten en un fluido bicapa de lípidos anfipáticos especialmente fosfolípidos. La naturaleza anfipática de estos lípidos se debe a que presentan hacia el exterior la parte polar (cargada) de los fosfolípidos, la que es atraída hacia el medio acuoso. La parte interior de la membrana está constituida por las colas (no polares) de los fosfolípidos que forman una barrera entre los medios acuosos.




IV. VIDA ANIMAL, HEMOGLOBINA, ENERGÍA DE COMPUESTOS ORGÁNICOS, DOMINIO DEL FUEGO

LA CAPA de ozono formada por la acción de la luz ultravioleta dio a la Tierra una protección contra la alta energía de esta misma radiación, creándose así las condiciones apropiadas para la aparición de la vida. Las algas verde-azules y los vegetales perfeccionaron el procedimiento para combinar el CO2 atmosférico con el agua y los minerales del suelo con producción de materia orgánica y liberación de oxígeno que transformaría, en forma lenta pero segura, a la atmósfera terrestre de reductora en oxidante.
La química, que antes de la aparición de la vida se efectuaba en el planeta espontánea pero lentamente, ahora se acelera en forma notable. El oxígeno que se generaba por fotólisis del agua, ahora se libera de ésta en forma eficiente mediante la reacción de fotosíntesis, usando la luz solar como fuente de energía.
La hemoglobina es una cromoproteína compuesta por una proteína, la globina, unida a una molécula muy parecida a la clorofila, pero que, en vez de magnesio, contiene fierro; el oxígeno se le une en forma reversible. Cuando la hemoglobina está unida a oxígeno se llama oxihemoglobina y cuando lo ha soltado deoxihemoglobina.

LOS ANIMALES Y EL HOMBRE
De todos los animales que poblaron el planeta hubo uno que destacó por tener un cerebro mayor que los demás: el hombre. Aunque más débil que otros animales de su mismo peso, que competían con él por alimentos y espacio, fue poco a poco dominando su entorno vital gracias a su cerebro superior, que le permitía aprender y asimilar experiencia.
El cerebro es un órgano maravilloso que distingue al hombre de los demás animales y lo ha llevado a dominar el planeta y, más aún, a conocer otros mundos.
Siendo el cerebro un órgano tan importante, es lógico que sea alimentado en forma privilegiada en relación con los demás órganos del cuerpo. El cerebro de un adulto requiere más de 120 gramos de glucosa por día, misma que puede provenir de precursores tales como el piruvato y los aminoácidos.
es aprovechada por el cerebro vía secuencia glicolítica y ciclo del ácido cítrico, y el La glucosa suministro de ATP es generado por catabolismo de glucosa.
Una forma de mostrar la gran importancia de este órgano que es el cerebro fue un hecho conocido y este fue:
DESCUBRIMIENTO DEL FUEGO
El cerebro del hombre crece, piensa, memoriza, aprende nuevas cosas hasta que un día, cuando menos se lo espera, descubre el fuego, aprende a dominarlo y transmite el conocimiento de generación en generación. El fuego es la primera reacción química que el hombre domina a voluntad; en esta importante reacción exotérmica se libera, en forma rápida, la energía que el organismo animal liberaba de los alimentos en forma lenta e involuntaria. El hombre aprendió a iniciar la reacción o a avivarla aumentando el oxígeno al soplar sobre las brasas en contacto con leña seca, y más tarde supo iniciarlo con chispas y por fricción.
Una vez controlado el fuego, el hombre lo pudo aplicar, primero, al cocimiento de alimentos, y más tarde a la fabricación de utensilios de arcilla, endurecidos por el fuego.
ENVEJECIMIENTO
Indudablemente, mientras más tiempo ha durado un objeto inanimado, su aspecto más se deteriora. El aspecto de los seres vivos cambia también con el tiempo: se hacen viejos. El tiempo que se mide por el número de días, meses y años transcurridos, bien podría medirse por el número de respiraciones o por el volumen de oxígeno que ha usado el cuerpo desde su nacimiento hasta su muerte.






































IV.          IMPORTANCIA DE LAS PLANTAS EN LA VIDA DEL HOMBRE: USOS MÁGICOS Y MEDICINALES

Una vez que el hombre aprendió a dominar el fuego, estuvo en condiciones de fabricar recipientes de arcilla, los que, endurecidos por el fuego, le servirán para calentar agua, cocinar alimentos y hacer infusiones mágicas y medicinales. De esta manera los aceites esenciales arrastrados por el vapor de agua aromatizaban la caverna y se condensaban en el techo, con lo que se separaban las sustancias químicas contenidas en las plantas. El químico primitivo encontró que los aceites esenciales no solo tenían olor agradable, sino que muchos de ellos tenían además propiedades muy útiles, como eran las de ahuyentar a los insectos y de curar algunas enfermedades. El conocimiento de las plantas y sus propiedades seguía avanzando: ya no sólo las usaba el hombre como alimentos, combustible y material de construcción, sino también como perfume, medicinas y para obtener colorantes, que empleaba tanto para decorar su propio cuerpo y sus vestiduras, como para decorar techo y paredes de su cueva.
Los pueblos americanos tenían a la llegada de los españoles un amplio conocimiento de las plantas y sus propiedades, especialmente medicinales. Tan impresionante era la variedad de plantas que crecían en el nuevo mundo y tan notable el conocimiento que de ellas tenían los pueblos nativos que lograron interesar vivamente al rey de España

DROGAS ESTIMULANTES CON FINES MÁGICOS Y RITUALES

Muchas plantas fueron utilizadas en ritos mágico-religioso y muchas de ellas continúan en uso hasta nuestros días.

HONGOS

Ciertos hongos fueron usados con fines rituales en varias regiones del territorio mexicano y la práctica continúa también hasta nuestros días. El escrito más antiguo al que se tiene acceso se debe a André Thevet, L'histoire du Mechique (1973), basada en la obra perdida de Andrés Olmos (1543), Antigüedades mexicanas.

CURARE
La palabra curare es una adaptación al español de una frase que en la lengua de una de las tribus sudamericanas significa "matar aves".
Es un extracto acuoso de varias plantas, entre las que se encuentran generalmente especies de Chondodendron cissampelos y Strychnos







V.            FERMENTACIONES, PULQUE, COLONCHE, TESGÜINO, POZOL, MODIFICACIONES QUÍMICAS

MUCHOS microorganismos son capaces de provocar cambios químicos en diferentes sustancias, especialmente en carbohidratos. Es de todos conocido el hecho de que al dejar alimentos a la intemperie en poco tiempo han alterado su sabor y, si se dejan algún tiempo más, la fermentación se hace evidente comenzando a desprender burbujas como si estuviesen hirviendo. Esta observación hizo que el proceso fuese denominado fermentación (de fervere, hervir). Esta reacción, que ocurre en forma espontánea, provocada por microorganismos que ya existían o que cayeron del aire, hacen que la leche se agrie, que los frijoles se aceden y otros alimentos se descompongan, y que el jugo de piña adquiera sabor agrio y llegue a transformarse en vinagre.
Los mercaderes griegos llevaron la uva y su cultivo a Marsella desde 600 años a.C. y su cultivo se extendió hasta el Rin desde 200 años a. C.
El vino se convirtió en la bebida preferida de los pueblos mediterráneos, quienes la conservan hasta hoy y la han extendido a todo el mundo.

A continuación alguno ejemplos de fermentación

PULQUE
El pulque fue en Mesoamérica lo que el vino fue para los pueblos mediterráneos.
El pulque fue una bebida ritual para los mexicas y otros pueblos mesoamericanos. Era la bebida que se daba en las bodas, que se les daba a beber a los guerreros vencidos que iban a ser inmolados, la que se usaba en importantes ceremonias religiosas, etc. Estuvo tan arraigada en la cultura autóctona, que no bastaron 300 años de esfuerzos de las autoridades coloniales para eliminar su consumo, ni han bastado tampoco 176 años de esfuerzos de la sociedad independiente por desprestigiarla y tratar de sustituirla por otras bebidas obtenidas por fermentación, muy altamente prestigiadas por ser originarias de los pueblos europeos, cuya cultura se ha impuesto, como la cerveza y el vino, que cuentan con los medios masivos de comunicación para exaltar sus virtudes y el buen gusto que implica el consumirlas y ofrecerlas. A pesar del constante bombardeo propagandístico de los medios de comunicación, no se ha logrado eliminar la práctica ancestral de consumir pulque en las comunidades rurales y, todavía en escala significativa, en las ciudades. El aguamiel se consume directamente, siendo una bebida de sabor agradable que contiene alrededor de 9% de azúcares.

Colonche

Se conoce como colonche a la bebida alcohólica roja de sabor dulce obtenida por fermentación espontánea del jugo de tuna, especialmente de la tuna cardona (Opuntia streptacantha).
El colonche se prepara para el consumo local de los estados donde es abundante el nopal silvestre, como son Aguascalientes, San Luis Potosí y Zacatecas.
El procedimiento que se sigue para su elaboración no ha cambiado, aparentemente, desde hace miles de años. Las tunas se recolectan en el monte, se pelan y enseguida se exprimen y cuelan a través de un cedazo de ixtle o paja para eliminar las semillas. El jugo se hierve y se deja reposar para que sufra la fermentación espontánea. En ocasiones se agrega un poco de colonche para acelerar la fermentación. Se pueden agregar al jugo también algunas de las cáscaras de la tuna, ya que son éstas las que contienen los microorganismos que provocan la fermentación.

El tesgüino
Bebida típica de los pueblos del norte y noroeste de México
El tesgüino es una bebida consumida en las comunidades indígenas y por la población mestiza de varios estados del norte y noroeste de México.
Para su preparación, el maíz se remoja durante varios días, se escurre y luego se deja reposar en la oscuridad para que al germinar produzca plántulas blancas de sabor dulce. El maíz germinado, preparado de esta manera, se muele en un metate; enseguida se hierve hasta que adquiere color amarillo, se coloca en un recipiente de barro cocido y se deja fermentar. Para lograr la fermentación, se agregan varias plantas y cortezas, dejando la mezcla en reposo por varios días antes de servirla para su consumo.

Pozol
El pozol es maíz molido y fermentado que al ser diluido con agua produce una suspensión blanca que se consume como bebida refrescante y nutritiva. Se puede agregar a la bebida sal y chile molido, azúcar o miel según el gusto o los fines a que se destine.
El pozol se consume durante las comidas o como refresco a cualquier hora del día. Los indígenas de Chiapas o de otros estados del Sureste lo llevan como provisión antes de emprender un viaje o antes de iniciar su jornada de trabajo.
Preparación: Para la obtención del pozol se prepara una masa de maíz, siguiendo el mismo procedimiento que se utiliza para la preparación de las tortillas. Veamos en que consiste éste.
El maíz se hierve en agua de cal aproximadamente al 10%. El maíz cocido, llamado nixtamal, se escurre y se lava con agua limpia. El nixtamal limpio se muele en metate o en un molino hasta obtener una masa con la que se hacen bolas que se envuelven en hojas de plátano para mantener la humedad. En esta forma se deja reposar por varios días para que la fermentación se lleve a cabo. Dependiendo del tiempo en que ésta se realice, variará el gusto del producto final.













VI.         JABONES, SAPONINAS Y DETERGENTES

SAPONIFICACIÓN Los jabones se preparan por medio de una de las reacciones químicas más conocidas: la llamada saponificación de aceites y grasas.
Los aceites vegetales, como el aceite de coco o de olivo, y las grasas animales, como el sebo, son ésteres de glicerina con ácidos grasos. Por eso cuando son tratados con una base fuerte como sosa o potasa se saponifican, es decir producen la sal del ácido graso conocida como jabón y liberan glicerina. En el caso de que la saponificación se efectúe con sosa, se obtendrán los jabones de sodio, que son sólidos y ampliamente usados en el hogar. En caso de hacerlo con potasa, se obtendrán jabones de potasio, que tienen consistencia líquida.
Los jabones de sodio tienen un amplio uso en nuestra civilización, por lo que la industria jabonera es una de las más extensamente distribuidas en el mundo entero.

FABRICACIÓN DE JABÓN

El proceso de fabricación de jabón es, a grandes rasgos, el siguiente: se coloca el aceite o grasa en un recipiente de acero inoxidable, llamado paila, que puede ser calentado. mediante un serpentín perforado por el que se hace circular vapor. Cuando la grasa se ha fundido ±8Oº, o el aceite se ha calentado, se agrega lentamente y con agitación una solución acuosa de sosa. La agitación se continúa hasta obtener la saponificación total. Se agrega una solución de sal común (NaCl) para que el jabón se separe y quede flotando sobre la solución acuosa.
Se recoge el jabón y se le agregan colorantes, perfumes, medicinas u otros ingredientes, dependiendo del uso que se le quiera dar. El jabón se enfría y se corta en porciones, las que enseguida se secan y prensan, dejando un material con un contenido de agua superior al 25%.

DETERGENTES

Los primeros detergentes sintéticos fueron descubiertos en Alemania en 1936, en lugares donde el agua es muy dura y por lo tanto el jabón formaba natas y no daba espuma. Los primeros detergentes fueron sulfatos de alcoholes y después alquilbencenos sulfonados, más tarde sustituidos por una larga cadena alifática, generalmente muy ramificada.
Dado que los detergentes han resultado ser tan útiles por emulsionar grasas con mayor eficiencia que los jabones, su uso se ha popularizado, pero, contradictoriamente, han creado un gran problema de contaminación, ya que muchos de ellos no son degradables. Basta con ver los ríos rápidos que llevan las aguas municipales para darse cuenta de cómo se elevan en ellos verdaderas montañas de espuma. Para evitar esto, se han hecho esfuerzos por sustituir la cadena lateral (R) ramificada por una cadena lineal, la que sí sería biodegradable. Los detergentes son muy variados, y los hay para muy diversos usos; simplemente, para ser efectivos en las condiciones de temperatura que se acostumbran en el lavado industrial de los distintos pueblos de la Tierra, tiene que variar su formulación.

ENZIMAS
Estos materiales adquirieron gran popularidad en Estados Unidos y Europa en la década de los sesenta debido a su facultad de eliminar manchas proteicas o carbohidratos, aun en el remojo. Los detergentes con esta formulación son capaces de eliminar manchas de sangre, huevo, frutas, etcétera.
Con todo, estos detergentes han producido problemas de salud en los obreros que trabajan en su elaboración. Por suerte, hasta ahora no los han provocado en las amas de casa.
El problema con los obreros se debió principalmente a que los detergentes producen polvo que, al ser aspirado, pasa a los pulmones. Esto se ha resuelto fabricando detergentes con gránulos mayores, para que no produzcan polvo.

































VII.       HORMONAS VEGETALES Y ANIMALES, FEROMONAS, SÍNTESIS DE HORMONAS A PARTIR DE SUSTANCIAS VEGETALES

LAS PLANTAS no sólo necesitan para crecer agua y nutrientes del suelo, luz solar y bióxido de carbono atmosférico. Ellas, como otros seres vivos, necesitan hormonas para lograr un crecimiento armónico, esto es, pequeñas cantidades de sustancias que se desplazan a través de sus fluidos regulando su crecimiento, adecuándolos a las circunstancias. Cuando la planta germina, comienzan a actuar algunas sustancias hormonales que regulan su crecimiento desde esa temprana fase: las fitohormonas, llamadas giberelinas, son las que gobiernan varios aspectos de la germinación; cuando la planta surge a la superficie, se forman las hormonas llamadas auxinas, las que aceleran su crecimiento vertical, y, más tarde, comienzan a aparecer las citocininas, encargadas de la multiplicación de las células y que a su vez ayudan a la ramificación de la planta.
No son las auxinas las únicas fitohormonas que requiere una planta para su crecimiento; requieren también de otro tipo de ellas que favorezca la multiplicación de las células. El primero en demostrar la existencia de estas sustancias, que se conocen como citocininas, fue Carlos O. Miller, quien observó que, al poner cubitos de zanahoria o papa en agua de coco, éstos crecían con proliferación de células.

MENSAJEROS QUÍMICOS EN INSECTOS Y PLANTAS
Existen tres clases principales de mensajeros químicos: alomonas, kairomonas y feromonas
Las alomonas: son sustancias que los insectos toman de las plantas y que posteriormente usan como arma defensiva; las kairomonas son sustancias químicas que al ser emitidas por un insecto atraen a ciertos parásitos que lo atacarán, y las feromonas son sustancias químicas por medio de las cuales se envían mensajes como atracción sexual, alarma, etcétera.

Las kairomonas: son sustancias que denuncian a los insectos herbívoros ante sus parásitos, a los que atraen. Sobre ellos depositan sus huevecillos para que, cuando nazcan, las larvas se alimenten de ellos.
Las kairomonas probablemente sean producidas por la planta de la que se alimenta el insecto herbívoro, el cual, al comerlas, las concentra en su cuerpo atrayendo a su parásito. De esta manera la planta se defiende de forma indirecta, ya que el insecto que la devora concentra la sustancia que lo delatará.

Las feromonas: Los insectos usan varios medios para comunicarse, pero cualquiera que sea la modalidad, el insecto anuncia su presencia no sólo a congéneres, sino a otros insectos que tienen el aparato apropiado para detectarlo. Por ejemplo, las feromonas, cuando son liberadas para atraer al sexo contrario, proclaman territorio y alarman a los de su misma clase. Por tanto, son importantes medios de comunicación entre los de su especie; sin embargo, también son advertidos por otros insectos, por lo que tales sustancias sirven al parásito para localizar a su víctima

FEROMONAS DE MAMÍFEROS
El que los animales respondan a señales químicas se sabe desde la Antigüedad: los perros entrenados siguen a su presa por el olor. El marcar su territorio le ahorra muchas veces el tener que pelear, ya que el territorio marcado será respetado por otros congéneres y habrá pelea sólo cuando el territorio marcado sea invadido.

HORMONAS SEXUALES
Las hormonas sexuales son producidas y secretadas por los órganos sexuales, bajo el estímulo de sustancias proteicas que llegan, por medio de la corriente sanguínea, desde el lóbulo anterior de la pituitaria en donde estas últimas se producen.

HORMONAS MASCULINAS
Las hormonas masculinas son las responsables del comportamiento y las características masculinas del hombre y otros similares.
Los caracteres sexuales secundarios que en el hombre son, entre otros, el crecimiento de barba y bigote, en el gallo son muy notables y han servido para evaluar sustancias con actividad de hormona masculina.

HORMONAS FEMENINAS (ESTRÓGENOS)
Las hormonas femeninas son sustancias esteroidales producidas en el ovario. Estas sustancias dan a la mujer sus características formas redondeadas y su falta de vello en el rostro.





















IX.GUERRAS QUÍMICAS, ACCIDENTES QUÍMICOS

GUERRA QUÍMICA ANTES de que el hombre apareciera sobre la Tierra ya existía la guerra. Los vegetales luchaban entre sí por la luz y por el agua y sus armas eran sustancias químicas que inhiben la germinación y el crecimiento del rival. La lucha contra insectos devoradores ha sido constante durante millones de años. Las plantas mal armadas sucumben y son sustituidas por las que, al evolucionar, han elaborado nuevas y más eficaces sustancias que las defienden. Los insectos también responden, adaptándose hasta tolerar las nuevas sustancias; muchos perecen y algunas especies se extinguen, pero otras llegan a un acuerdo y logran lo que se llama simbiosis, brindándose ayuda mutua, como el caso de la Yucca y la Tegeticula mexicana. En esta vida en simbiosis, la Yucca proporciona alimento y materia prima hormonal a la mariposa nocturna. Ésta, en cambio, se encarga de polinizar las flores de la planta asegurándole así su fructificación y reproducción.
De la misma forma, las abejas toman néctar y polen de las flores, pero a cambio ayudan a la fructificación y por consiguiente a la reproducción de la planta al polinizar sus flores.

GUERRA ENTRE INSECTOS Y DE INSECTOS CONTRA ANIMALES MAYORES
Muchos insectos poseen aguijones conectados a glándulas productoras de sustancias tóxicas con los que se defienden de los intrusos. Las avispas y las abejas son insectos bien conocidos por inyectar sustancias que causan dolor y alergias. El hombre conoce bien estas cualidades, pues muchas veces por perturbar la tranquilidad del enjambre ha sido inyectado con dopamina o histamina, sustancias entre otras que son responsables del dolor, comezón e hinchazón de la parte atacada.
Algunos insectos escupen sustancias tóxicas sobre el enemigo, como lo hace el escarabajo bombardero.
La gente que es alérgica se puede sentir muy mal por un solo piquete de abeja, de manera que, por ejemplo, la abeja africana puede llegar hasta causar la muerte a estas personas sensibles.

EL HOMBRE USA LA QUÍMICA PARA LA GUERRA
Posiblemente la primera reacción química que el hombre aprovechó para destruir a su enemigo fue el fuego. La misma reacción de oxidación que logró dominar para tener luz y calor, para cocinar alimentos y fabricar utensilios, en fin, para hacer su vida más placentera, fue usada para dar muerte a sus congéneres al quemar sus habitaciones y cosechas.

USO DE SUSTANCIAS TÓXICAS EN LA GUERRA
Las sustancias de alta toxicidad fueron utilizadas como armas químicas en la primera Guerra Mundial. Los alemanes lanzaron, en abril de 1915, una nube de cloro sobre los soldados franceses quienes, al no estar protegidos, tuvieron que retirarse varios kilómetros. Pocos días después los alemanes repitieron el ataque contra las tropas canadienses con los mismos resultados.

GASES NEUROTÓXICOS
Los alemanes desarrollaron a finales de la segunda Guerra Mundial los gases neurotóxicos sarina o GB y tabun.

LLUVIA AMARILLA, POSIBLE USO DE MICOTOXINAS COMO ARMAS DE GUERRA

Dadas las historias contadas por los montañeses del sudeste de Asia acerca de la aparición de nubes amarillas que matan rápidamente a quienes toca en forma directa y que enferma con extraños síntomas a la gente más alejada, y las de algunos nativos de Laos y Kampuchea que hablan de lluvia amarilla que provoca muerte y enfermedad, la embajada de los Estados Unidos y después la comunidad científica internacional comenzaron a inquietarse.